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Abstract

Holographic theory suggests that physics changes radically at the Planck length,
lp =

√
~G/c3 = 1.6×10−35m. Black hole and string theories theorize that at such small

length scales the universe is holographic, with reality existing in two dimensions with
the third dimension conjointly linked with time. The Fermilab Holometer is an experi-
ment designed to investigate the nature of space-time on these Planckian length scales.
The Holometer is an extremely sensitive laser interferometer that, upon completion,
will surpass the sensitivity of the GEO600 and LIGO gravitational wave detectors. At
such high sensitivities, the Holometer should detect holographic fluctuations in space-
time. The experiment uses two power-recycled interferometers in close proximity of
their causal space-time diamonds in order to see correlated holographic noise. In order
to understand the power response of the power-recycled interferometers, the equations
for the electric fields within the interferometers were derived. These derivations can be
understood and utilized in a high school setting being that the highest order of math
needed is an algebra background with knowledge in basic complex numbers. With
these derivations, one can also investigate various properties of the interferometer such
as the power output at the antisymmetric port, the finesse of the lasers, and power
spectrum of the holographic noise.

This paper is part of a larger collaborative manual that will provide knowledge on
holographic theory and the apparatus in an accessible manner for all who are interested.
This manual is still a work in progress.

1 Introduction

Max Karl Ernst Ludwig Planck in 1899 proposed a set of five fundamental units of measure
defined by five universal constants: the gravitational constant G, reduced Planck constant ~,
speed of light c, Coulomb constant k, and Boltzmann’s constant kb. Simultaneously solving
the equations describing gravitational force, mechanical force, thermal energy, Coulomb’s
law, and momentum in terms of Planck units, one can derive the Planck time, length, mass,
charge, and temperature. The Planck length, lp =

√
~G/c3 = 1.6× 10−35m, is of particular

interest to physicists. It is theorized that the physics of space and time change drastically
at such small length scales.

2 Theory

2.1 The Entropy of Information

So why is the Planck length of such interest? In order to answer this question, we must
delve into the realm of information theory and black hole physics. Information has become
a ubiquitous part of our everyday lives. For example, the systems and processes that handle
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and store information dominate the Internet. The technology that advances the storage size
and transfer rate of information improves exponentially year by year. But one must ask,
when will this progress stop? Is there such thing as a bandwidth limit for information? For
the universe?

To answer this question we turn to statistical mechanics and the concept of entropy. Entropy
is defined as a measure of the amount of energy that is available to do work. Quantitatively,
entropy is a state variable, which is some measurable property of an object or system, that is
defined for a reversible thermodynamic process at some temperature Tand heat Q. Similarly
in information theory, the entropy of a communications system, or the Shannon entropy, is
a measure of the amount of information in a system.

Conceptually, thermodynamic entropy and Shannon entropy are equivalent. The difference
is a matter of convention, in particular the modes of freedom considered. For example, the
Shannon entropy of a transistor only depends on the overall state of the transistor, which is
either on or off, 0 or 1. Therefore, there are only two degrees of freedom in this system. On
the contrary, the thermodynamic entropy of the same transistor depends on all of the states
of the atoms that make up the transistor. It is calculated for a single silicon microchip that
the Shannon entropy is 1010 bits, whereas the thermodynamic entropy is about 1023 bits
at room temperature [3]. However, when calculating the entropies with the same degrees of
freedom, the Shannon and thermodynamic entropies are the same. This leads us to several
questions. What is the maximum degree of freedoms for any system? What is the maximum
number of information we can fit into a system? What is the bandwidth limit of the universe?

This is where we are at the limits of our knowledge. In order to understand the information
capacity of a system, we must understand the system at its smallest limit of structure. This
limit is the Planck length. But another question arises. Why is the limit the Planck length
and not some other arbitrary length? In order to answer this question, we must go into the
realm of black hole thermodynamics.

2.2 Black Holes and the Second Law of Thermodynamics

In 1915, Albert Einstein published his theory of general relativity. General relativity unifies
special relativity and Newtonian gravitation by describing gravity as a property of space-
time. The theory suggests that the curvature of space-time is dependent on the mass-energy
and linear momentum of the present matter and radiation. The interaction of gravity and
space-time are described by the Einstein field equations, a set of ten partial differential
equations. A couple of months later, Karl Schwarzschild obtained an exact solution to these
equations. His solution had a peculiar behavior at what is known as the Schwarzschild radius,
where certain terms of the Einstein field equations blew up to infinity creating a singularity.
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This singularity implies the existence of black holes.

A property of a black hole is the event horizon, which is a boundary of space-time. If matter
or light passes the event horizon, they can only go inwards toward the mass of the black
hole. Once over the event horizon, nothing, including light, can escape the gravity of the
black hole. If an event happened within the event horizon, an observer would never know if
the event ever occurred. Thus, information, once over the event horizon, can never reach an
observer on the outside of the horizon.

The laws of conservation of energy and angular momentum are conserved in black holes.
This can be verified through the interaction of black holes with the surrounding space-time
as it collects angular momentum and mass from matter that falls into its event horizon.
However, it appears that black holes violate the second law of thermodynamics.

The second law of thermodynamics qualitatively states that most processes in nature are
irreversible. For example, after you burn a log for fire, it is highly unlikely that the log will
rematerialize. When matter gets sucked into a black hole, it seems as though the entropy
disappears too, which violates the second law of thermodynamics. To reconcile this viola-
tion, Stephen Hawking and Jacob Bekenstein theorized that the entropy of a black hole is
proportional to the area of the event horizon of the black holes event horizon divided by the
Planck area, SBH = kA/4l2p.

2.3 We Are . . . Holograms?!

So now let’s make a connection between the thermodynamic entropy of a black hole to its
Shannon entropy. Shannon entropy is measured in bits and the total quantity of bits is
determined by the total degrees of freedom in the system. How dense we can package infor-
mation into space-time is determined by these degrees of freedom. Based on the entropy of a
black hole and AdS/CFT correspondence theories, the limit of information we can pack into
space-time is the Planck area constrained to 2+1 dimensions. What does this mean? This
means that we are living in a holographic universe. But what does it mean that the universe
is holographic? It means that our perception of reality as three-dimensional is an illusion.
We are actually two-dimensional entities with the third dimension inextricably linked with
time.

You might be unconvinced that you are a hologram. However, this hypothesis can be inves-
tigated through an experiment such as the Fermilab Holometer. But how would you figure
out if you were a hologram or not? The holographic principle says that there is a bandwidth
limit on the universe. This is analogous to the statement that space-time is pixelated at the
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Planck scale. One way to approach this idea is to imagine the universe as a movie. If you
were a character in a movie and took a high-powered microscope and looked closely enough,
you would discover that you are made of blue, red, and green pixels. Similarly with the
Holometer, we are looking at an extremely small length scale, the Planck length. Sadly, a
microscope with Planckian resolution does not exist. However, using interferometers, we can
investigate the physics of space-time at the Planck scale.

3 Experimental Setup

The Holometer consists of two power-recycled Michelson interferometers in close proximity
such that their causal light diamonds overlap. An interferometer is a device that superim-
poses electromagnetic waves in order to gather information on the waves. This is usually
done by splitting and recombining the waves through a beam splitter. The resulting inference
pattern is determined by the phase differences of the recombined waves. Waves in phase will
result in constructive inference patterns, whereas waves out of phase result in destructive
patterns.

A Michelson interferometer uses a single laser beam splitter for separating and recombining
electromagnetic waves. A coherent light source (in our case a laser beam) is incident on
a 50/50 beam splitter which splits the beam off into two perpendicular optical arms. The
beams reflect off highly reflective mirrors and recombine at the beam splitter. The recom-
bined beam, called the antisymmetric beam, is then analyzed at a photodetector.

The vibrations in space-time due to holographic noise lead to fluctuations in the measured
phase of the laser beam, which drift about a Planck length per Planck time. Two interfer-
ometers in close proximity of each other should see the same correlated holographic signal.

4 Field Calculations for a Power-Recycled Michelson

Interferometer

4.1 The 1D Optical Cavity

Electromagnetic waves propagate in space as E = E0e
ikl, where E0 is the initial wave am-

plitude, k is the wavenumber, and l is the length of the optical cavity. In an interferometer,
the length of the optical cavities determines the phase of the wave. In order to simplify
the calculations, we will consider the scattering states using the complex symmetric form
S = [r, it, it, r] as suggested in Lasers by Siegman [1, p. 406]. Remembering this symmetric
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form is easier than using the physical bound conditions of the mirrors and beam splitter.
This means that a plane wave hitting a mirror with reflectivity r and transmission t pro-
duces a reflected beam with amplitude ER = rE0 and a transmitted beam with amplitude
ET = itE0. Using a convention where we have to know the physical boundary conditions
would require us to determine whether or not the reflected coefficient is negative or posi-
tive. It is much easier to remember that the reflective coefficient is simply r and that the
transmitted coefficient is it. In general, a mirror will also have a loss a, where r2+t2+a2 = 1.

Figure 1: 1D optical cavity

The one-dimensional optical cavity in Figure 1 has an input beam of amplitude E0 to two
mirrors (M1 and M2). One of the things we need to do is calculate the circulated (E1),
reflected (ER), and transmitted (ET ) amplitudes in the optical cavity. Deriving these equa-
tions will help us calculate and measure the correlations in the optical phase flucuations of
the antisymmetric ports (the power of ET ) of the two Michelson interferometers [2]. In order
to do this, the wave amplitudes must first be determined. The wave amplitude can either be
described as a wave propagation in space-time like equations 1b and 1d, or a superposition
of reflected and transmitted beam amplitudes like equations 1a, 1c, 1e, or 1f. If the wave has
propagated the length of the optical cavity, its wave amplitude is described as E = E0e

ikl

with a collected phase of kl (l being the distance that the wave traveled in the cavity) . For
example, E2 is the resultant propagation of E1, so its wave amplitude is simply E2 = E1e

ikl.

On the other hand, E1 is formed by the transmitted amplitude of E0 and the reflected
amplitude of E4; therefore the wave amplitude for E1 is E1 = it1E0 + r1E4. As another
example, E3 is only the reflected beam of E2, therefore its wave amplitude is simply E3 =
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r2E2. Using this method, one can describe all the wave amplitudes in a 1D cavity.

E1 = it1E0 + r1E4 (1a)

E2 = E1e
ikl (1b)

E3 = r2E2 (1c)

E4 = E3e
ikl (1d)

ER = r1E0 + it1E4 (1e)

ET = it2E2 (1f)

Now we can use a scatter matrix and row reduction to solve for E1, ER, and ET simulta-
neously. However, the three expressions can be solved directly using substitution. We shall
use the latter method in that it requires no knowledge of linear algebra.

Solving for the circulated beam:

E1 = it1E0 + r1E4 (2a)

= it1E0 + r1e
ikl (2b)

= it1E0 + r1r2e
ikl (2c)

= it1E0 + r1r2E1e
2ikl (2d)

E1 − r1r2e2ikl = it1E0 (2e)

E1(1− r1r2e2ikl) = it1E0 (2f)

(2g)

and thus
E1

E0

=
it1

1− r1r2e2ikl
(3)

Solving for the transmitted beam:

ET = it2E2 (4a)

= it2e
iklE1 (4b)

=
−t1t1eiklE0

1− r1r2e2ikl
(4c)

so
ET
E0

=
−t1t2

e−ikl − r1r2eikl
. (5)

At resonance (eikl = 1), for lossless mirrors (r2 + t2 = 1) with identical reflectivity, the ratio
reduces down to 1.
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Solving the reflected beam:

ER = r1E0 + it1E4 (6a)

= r1E0 + it1e
iklE3 (6b)

= r1E0 + it1r2e
iklE2 (6c)

= r1E0 + it1r2e
2iklE1 (6d)

= r1E0 −
t21r2e

2iklE0

1− r1r2e2ikl
(6e)

so

ER
E0

= r1 −
t21r2e

2ikl

1− r1r2e2ikl
(7)

At resonance (eikl = 1), for lossless mirrors (r2 + t2 = 1) with identical reflectivity, the ratio
reduces to 0.

For lossless mirrors, with r1 = 0.95 and r2 = 0.99999, the transmitted power is

Pt = (ET/E0)
2 = 7.217× 10−3 (8)

The power incident on the cavity equals the power reflected plus the power transmitted.

E2
0 = E2

T + E2
R (9)

This relation holds true for the special case where the two mirrors are the same, with no loss
(a1 = a2 = 0) and r1 = r2 = r, t1 = t2 = t, and r2 + t2 = 1.
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It can be shown that for the general case where r1 6= r2 and eikl = 1 that power is conserved.

E2
0 = E2

T + E2
R (10a)

1 = (ET/E0)
2 + (ER/E0)

2 (10b)

=

(
−t1t2

e−ikl − r1r2eiφ

)2

+

(
r1 −

t21r2e
2ikl

1− r1r2e2ikl

)2

(10c)

=
(1− r21)(1− r22)

(1− r1r2)2
+

(r1(1− r1r2)− r2(1− r21))2

(1− r1r2)2
(10d)

=
1− r22 − r21 + r21r

2
2

1− 2r1r2 + r21r
2
2

+
(r1 − r2)2

1− 2r1r2 + r21r
2
2

(10e)

=
(1− r22 − r21 + r21r

2
2) + (r21 − 2r1r2 + r22)

1− 2r1r2 + r21r
2
2

(10f)

=
1− 2r1r2 + r21r

2
2

1− 2r1r2 + r21r
2
2

(10g)

1 = 1 (10h)

4.2 The 2D Optical Cavity

Figure 2: 2D optical cavity

The wave amplitudes for the 2D cavity are derived in the same fashion as the 1D cavity.
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The only difference is that now we have a beam splitter and three 1D cavities. Using the
same method, we determine the wave amplitudes to be the following:

E1 = itrmE0 + rrmE9 (11a)

E2 = E1e
ikl0 (11b)

E3 = rbsE2 (11c)

E4 = itbsE2 (11d)

E5 = E3e
ikly (11e)

E6 = ryE5 (11f)

E7 = E6e
ikly (11g)

E8 = rbsE7 + itbsE12 (11h)

E9 = E8e
ikl0 (11i)

E10 = E4e
iklx (11j)

E11 = rxE10 (11k)

E12 = E11e
iklx (11l)

ER = rmE0 + itmE9 (11m)

ET = rbsE12 + itbsE7 (11n)

And again, using direct substitution we solve for E1, ER, and ET .

Solving for the circulated beam:

E1 = itmE0 + rmE9 (12a)

= itmE0 + rm(E8e
ikl0) (12b)

= itmE0 + rme
ikl0(rbsE7 + itbsE12) (12c)

= itmE0 + rme
ikl0(rbse

iklyE6 + itbse
iklxE11) (12d)

= itmE0 + rme
ikl0(rbsrye

iklyE5 + itbsrxe
iklxE10) (12e)

= itmE0 + rme
ikl0(rbsrye

2iklyE3 + itbsrxe
2iklxE4) (12f)

= itmE0 + rme
ikl0(r2bsrye

2iklyE2 − t2bsrxe2iklxE2) (12g)

= itmE0 + rme
ikl0(r2bsrye

2iklyeikl0E0 − t2bsrxe2iklxeikl0) (12h)

E1

E0

=
itm

1− rme2ikl0(r2bsrye2ikly − t2bsrxe2iklx)
(13)
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Solving for the transmitted beam:

ET = rbsE12 + itbsE7 (14a)

= rbse
iklxE11 + itbseiklyE6 (14b)

= rbsrxe
iklxE10 + itbsrye

iklyE5 (14c)

= rbsrxe
2iklxE4 + itbsrye

2iklyE3 (14d)

= itbsrbsrxe
2iklxE2 + itbsrbsrye

2iklyE2 (14e)

= itbsrbsrxe
2iklxeikl0E1 + itbsryrbse

2iklyeikl0E1 (14f)

(14g)

Therefore:

ET
E0

=
−tmeikl0(tbsrbsrxe2iklx + tbsrbsrye

2ikly)

1− rme2ikl0(r2bsrye2ikly − t2bsrxe2iklx)
(15)

Solving for the reflected beam:

ER = rmE0 + itmE9 (16a)

= rmE0 + itm(E8e
ikl0) (16b)

= rmE0 + itme
ikl0(rbsE7 + itbsE12) (16c)

= rmE0 + itme
ikl0(rbse

iklyE6 + itbse
iklxE11) (16d)

= rmE0 + itme
ikl0(rbsrye

iklyE5 + itbsrxe
iklxE10) (16e)

= rmE0 + itme
ikl0(rbsrye

2iklyE3 + itbsrxe
2iklxE4) (16f)

= rmE0 + itme
ikl0(r2bsrye

2iklyE2 − t2bsrxe2iklxE2) (16g)

= rmE0 + itme
2ikl0(r2bsrye

2ikly − t2bsrxe2iklx)E1 (16h)

ER
E0

=
rm − e2ikl0(r2m + t2m)(r2bsrye

2ikly − t2bsrxe2iklx)

1− rme2ikl0(r2bsrye2ikly − t2bsrxe2iklx)
(17)

To find the power at the antisymmetric port as a fraction of the incident power on the cavity,
we multiply equation 15 by its complex conjugate.

PT =

[
−tmeikl0(tbsrbsrxe2iklx + tbsrbsrye

2ikly)

1− rme2ikl0(r2bsrye2ikly − t2bsrxe2iklx)

]
×
[
−tme−ikl0(tbsrbsrxe−2iklx + tbsrbsrye

−2ikly)

1− rme−2ikl0(r2bsrye
−2ikly − t2bsrxe−2iklx)

]
(18)
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To simplify, we will solve the numerator and denominator separately, and define the following
variables: ly + lo = l

′
y, lx + lo = l

′
x, and ly + lo = l

′
y, and ly − lx = l

′
. We will also use the

following trigonometric identity: cos(φ) =
eiφ + e−iφ

2
. Several intermediate steps have been

omitted in the interest of saving space.

Numerator = (−tmeikl0(tbsrbsrxe2iklx + tbsrbsrye
2ikly))(−tme−ikl0(tbsrbsrxe−2iklx + tbsrbsrye

−2ikly))

(19a)

= t2m(t2bsr
2
bsr

2
x + t2bsr

2
bsrxrye

2ik(lx−ly) + t2bsr
2
bsrxrye

2ik(ly−lx) + t2bsr
2
bsr

2
y) (19b)

= t2m(t2bsr
2
bsr

2
x + t2bsr

2
bsr

2
y + 2t2bsr

2
bsrxrycos(2kl

′
)) (19c)

Similarly,

Denominator = (1− rme2ikl0(r2bsrye2ikly − t2bsrxe2iklx))(1− rme−2ikl0(r2bsrye
−2ikly − t2bsrxe−2iklx))

(20a)

= 1− 2r2bsrmrycos(2kl
′

y) + 2t2bsrmrxcos(2kl
′

x) + r2m(r4bsr
2
y + t4bsr

2
x + 2r2bst

2
bsrxrycos(2kl

′
))

(20b)

Therefore, the final expression for the power at the antisymmetric port is:

PT =
t2mt

2
bsr

2
bs(r

2
x + r2y + 2rxrycos(2kl

′
))

1− 2rm(r2bsrycos(2kly
′) + t2bsrxcos(2kl

′
x) + r2m(r4bsr

2
y + t4bsr

2
x + 2r2bst

2
bsrxrycos(2kl

′))
(21)
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